Developing High-efficiency Agricultural Systems: A Forever Green Agriculture Initiative

Donald Wyse, University of Minnesota

How did agricultural landscapes lose their diversity?

How did agricultural landscapes lose their diversity?

Figure 23. Cover map of the Winnebago pheasant study area, 1976.

Conceptual framework for comparing land use and trade-offs of ecosystem services

J. A. Foley et al., Science 309, 570 - 574 (2005)

What are some of the **CONSEQUENCES** resulting from the loss of landscape diversity and continuous living soil covers?

Hypoxia in the Gulf of Mexico

June 15 - 28

Satellite images of vegetative activity.

Monthly Precipitation in the Cottonwood River Watershed

6 location average, 1939-1998

Annual Tile Drainage Loss in Corn-Soybean Rotation

Waseca, 1987-2001

Randall et al., 1997, JEQ 26:1240

Statewide nitrogen sources to surface waters

Getting There from Here: Forever Green

Getting perennials & winter annuals on the landscape by germplasm development, new agronomic practices, commercialization & supplychain development

- New genetic technologies allow rapid germplasm development
- Develop new agronomic practices (e.g. seeding tech.
- Commercialization: new market opportunities
- Supply chains: from production to end use

Developing New Perennial and Winter Annual Crops to Enhance Minnesota's Soil and Water Resources

PERENNIAL CROPS

- Intermediate wheatgrass "Kernza" wheat-like grain, forage, biomass
- Perennial sunflower edible seeds, oil
- Native polyculture grassland mixtures

 biomass, forage, natural products
- Perennial flax edible oil
- Kura clover N-fixing cover crop
- Silphium edible oil

WINTER ANNUAL CROPS

- Pennycress oil, biofuel, cover crop
- Camelina edible oil, biofuel, cover crop
- Winter barley food, malting barley
- Hairy vetch cover crop, N-fixation

NATIVE WOODY CROPS

- Hazelnuts nuts, edible oil
- Shrub willow biomass
- Elderberry antioxidant-rich fruit
- Agroforestry woody and herbaceous crop mixtures for feed, food and fuel

1. Field Pennycress

Thlaspi arvense

Enterprises: Oil—biodiesel/food Protein—food and feed Double or relay crop with soybean

Funding source: DOE/USDA, U of MN, MDA, Forever Green Initiative

Thlaspi arvense Pennycress

Brassicaceae (mustard family)

Extremely cold tolerant winter annual

Rapid seed maturity

High oil content

Double or relay cropping potential with soybean

Diploid/good breeding potential

3 Cover crop lies dormant

2014 Soybean and Oilseed yield St. Paul

7. Intermediate Wheatgrass Kernza™

Thinopyrum intermedium **Enterprises: Beer/Whiskey** Food **Biomass** Grazing Funding: IREE, MDA, Forever Green Initiative, The Land Institute

Intermediate wheatgrass

---- Environment services

Reduce erosion and soil nitrate leaching
 Reduce inputs of energy and pesticide
 Increase carbon sequestration

Intermediate wheatgrass in Minnesota

St. Paul Campus

Intermediate wheatgrass

---- Agronomic traits

Large seeds

---- 10-15g/1000 seeds

Large biomass ---- comparably to big bluestem and switchgrass)

Disease resistance

----- Lr38, Sr43, Sr44, Pm40, Pm43...

Favorable end-use food

---- wheat-wheatgrass blends

Evaluation of intermediate wheatgrass grain for food use

Flavor Development in IWG

	IWG
	Concentration
Aroma Compound	(ug/kg)
2-acetyl-1-pyrroline	5.4
2-ethyl-3,5-dimethylpyrazine	0.17
methional	547
acetyl formoin	1241
e-2-nonenal	0.82
2-acetyl-2-thiazoline	37
e,e-2,4-decadienal	0.69
2-phenylethanol	32.
furaneol	2296

Food products

Cookies are good

Food products

Muffins are OK

Food products

Yeast bread is not good alone

However,

20 to 50% IWG produces a good bread product